Getting Started: Embeddings
info
Embeddings can be used to create a numerical representation of textual data. This numerical representation is useful because it can be used to find similar documents.
Example
// Set the VERTEX_PROJECT to your GCP project with Vertex AI APIs enabled.
// Set VERTEX_LOCATION to a GCP location (region); if you're not sure about
// the location, set us-central1
package main
import (
"context"
"fmt"
"log"
"os"
"github.com/tmc/langchaingo/llms/googleai"
"github.com/tmc/langchaingo/llms/googleai/vertex"
)
func main() {
ctx := context.Background()
project := os.Getenv("VERTEX_PROJECT")
location := os.Getenv("VERTEX_LOCATION")
llm, err := vertex.New(ctx, googleai.WithCloudProject(project), googleai.WithCloudLocation(location))
if err != nil {
log.Fatal(err)
}
embeddings, err := llm.CreateEmbedding(ctx, []string{"I am a human"})
if err != nil {
log.Fatal(err)
}
fmt.Println(embeddings)
}
Dig deeper
📄️ Integrations
LangChain offers a number of Embeddings implementations that integrate with various model providers. These are: